Chapter 7: Reflection of Light

Reflection of Light

Definition: The return of light into the same medium after striking a surface.

Types of Reflection

- 1. **Regular Reflection**: Occurs on smooth, polished surfaces like mirrors.
- 2. **Irregular (Diffuse) Reflection**: Occurs on rough surfaces like walls or books; allows us to see most objects.

Important Terms

- **Incident Ray**: Ray striking the surface.
- **Reflected Ray**: Ray bouncing off the surface.
- **Point of Incidence**: Where the incident ray hits the surface.
- **Normal**: Perpendicular to the surface at the point of incidence.
- Angle of Incidence (i): Angle between incident ray and normal.
- Angle of Reflection (r): Angle between reflected ray and normal.
- Plane of Incidence: Contains incident ray and normal.
- Plane of Reflection: Contains reflected ray and normal.

Laws of Reflection

- 1. $\angle i = \angle r$
- 2. Incident ray, reflected ray, and normal lie in the same plane.

Image Formation by Reflection

- Light rays from an object reflect to form images.
- Types of Images:
 - o **Real**: Formed by actual intersection of reflected rays; inverted; seen on screen.

• **Virtual**: Formed by apparent intersection when rays are extended backward; erect; not seen on screen.

Plane Mirror

- Lateral Inversion: Left-right reversal of image.
- Image Characteristics:
 - o Virtual
 - Erect
 - Same size as object
 - Laterally inverted
 - o Same distance behind the mirror as the object in front

Multiple Images

- Two Inclined Mirrors: Multiple images lie in a circular pattern.
- Parallel Mirrors: Infinite images formed.
- Perpendicular Mirrors: Three images formed.

Uses of Plane Mirrors

- Looking glass
- Optician's room
- Barber's shop (paired mirrors)
- Periscope (2 mirrors at 45°)
- Kaleidoscope (3 mirrors at 60°)

Spherical Mirrors

Curved mirrors forming part of a sphere:

- 1. Concave Mirror: Silvered outer surface, reflection from inner surface.
- 2. **Convex Mirror**: Silvered inner surface, reflection from outer surface.

Key Terms:

- Centre of Curvature (C): Centre of sphere of which mirror is a part.
- Radius of Curvature (R): Radius of that sphere.
- **Pole (P)**: Centre of mirror surface.
- **Aperture**: Effective area of the mirror.
- **Principal Axis**: Line joining pole and centre of curvature.
- **Focus (F)**:
 - o **Concave**: Rays parallel to axis converge at F after reflection.
 - o **Convex**: Rays appear to diverge from F after reflection.
- Focal Length (f): Distance between pole and focus.

Ray Diagrams for Concave Mirror

Object Position	Image Position	Nature of Image
At infinity	At focus (F)	Real, inverted, point-sized
Far away	Near focus	Real, inverted, highly diminished
Beyond C	Between F and C	Real, inverted, diminished
At C	At C	Real, inverted, same size
Between C and F	Beyond C	Real, inverted, magnified
At F	At infinity	Real, inverted, highly magnified
Between F and P	Behind mirror	Virtual, erect, magnified

Convenient Rays for Ray Diagrams

- 1. Through centre of curvature reflected back on same path.
- 2. Parallel to principal axis passes through (concave) or appears from (convex) focus.
- 3. Through focus becomes parallel after reflection.
- 4. Incident at pole reflects symmetrically ($\angle i = \angle r$).

Uses of Spherical Mirrors

Concave Mirror:

- Shaving mirror
- Doctor's head mirror
- Reflectors in torches, headlights

Convex Mirror:

• Streetlight reflectors

 Rear-view mirrors in vehicles (wide field of view, always shows erect and diminished images)

